
AMPLE: Event-Driven Accelerator for
Mixed-Precision Inference of Graph Neural Networks

Pedro Gimenes, Aaron Zhao, George Constantinides
Department of Electrical & Electronic Engineering

Imperial College London
London, United Kingdom

{pg519, a.zhao, g.constantinides}@ic.ac.uk

Abstract—Graph Neural Networks (GNNs) have recently gained
attention due to their performance on non-Euclidean data. The use
of custom hardware architectures proves particularly beneficial
for GNNs due to their irregular memory access patterns, resulting
from the sparse structure of graphs. However, existing FPGA
accelerators are limited by their double buffering mechanism,
which doesn’t account for the irregular node distribution in
typical graph datasets. To address this, we introduce AMPLE
(Accelerated Message Passing Logic Engine), an FPGA accelerator
leveraging a new event-driven programming flow. We develop
a mixed-arithmetic architecture, enabling GNN inference to be
quantized at a node-level granularity. Finally, prefetcher for data
and instructions is implemented to optimize off-chip memory
access and maximize node parallelism. Evaluation on citation
and social media graph datasets ranging from 2K to 700K nodes
showed a mean speedup of 243× and 7.2× against CPU and
GPU counterparts, respectively.

Index Terms—FPGAs, graph neural networks, quantization

I. INTRODUCTION

Graphs serve as powerful representations for capturing
relationships between entities, which are represented as nodes
connected together by edges. This structure enables modeling
complex systems such as social networks [1] and recommenda-
tion systems [8]. Graph Neural Networks (GNNs) have emerged
as an effective approach for processing graph data by learning
complex relational information [4, 7].

Inference on GNN models can be divided into two compu-
tational phases, (1) Aggregation and (2) Transformation [2].
In the Aggregation phase, a permutation-invariant function
such as summation or mean is applied over the feature
embeddings of a node’s neighbors. The results are then
utilized in the Transformation phase, which consists of a
fully-connected layer used to generate the updated feature
embedding for each node. While the Transformation phase
presents a highly regular computational pattern, which can
be effectively accelerated on a parallelized device such as a
GPU, the Aggregation phase involves many irregular memory
accesses due to the random and sparse nature of typical graph
data. Additionally, aggregation latency is a function of a node’s
degree, which follows a highly non-uniform distribution. As
such, an efficiently-designed GNN accelerator needs to alleviate
the computational irregularity of the Aggregation phase while
leveraging the regularity of the Transformation phase [10].

Although CPU memory systems are a mature and highly
optimized technology, the sparse structure of graph data renders

traditional cache systems less effective, since node aggregation
incurs a high number of accesses to non-contiguous memory
ranges. Inference on GPUs offers higher performance due to
the deep level of parallelism, however, these devices are limited
by high-latency memory management mechanisms. Addition-
ally, there is no support for inter-phase pipelining, meaning
aggregation results must be stored into off-chip memory before
being re-fetched for the transformation phase. Additionally,
modern devices have limited support for computation with
low-precision numerical formats.

These considerations have motivated the design of several
GNN accelerators, such as HyGCN and GenGNN. However,
(i) the double-buffering mechanism deployed in HyGCN is
not well suited for graph computation due to the non-uniform
distribution of node degrees. Under this paradigm, low degree
nodes must wait for higher degree nodes before computation
can proceed, causing a high number of pipeline gaps. This
highlights the need for an event-driven programming flow,
where nodes are independently allocated resources and sched-
uled onto the accelerator. Additionally, (ii) neither accelerator
offers hardware support for mixed precision. As observed by
Tailor et al. [6], the accuracy cost of quantization in GNNs
is predominantly due to the aggregation phase and directly
correlated to a node’s degree. As such, casting low-degree
nodes to lower-precision formats while preserving high-degree
nodes in high precision leads to reduced memory cost and
resource usage at a low cost to model accuracy. Finally,
(iii) existing accelerators require on-chip buffering of node
embeddings for the entire input graph. As such, these have
limited applicability for inference on large graphs (> 100k
nodes) where embeddings cannot feasibly be stored on-chip,
highlighting the need for a node-centric pre-fetching system
to hide memory access latency while the accelerator is busy.
We address these shortcomings by introducing a novel GNN
accelerator, AMPLE, contributing the following:

• We showcase an event-driven programming model for
GNN acceleration, enabling the host to program nodes
asynchronously through memory-mapped registers.

• We propose an architecture featuring a pool of multi-
precision Aggregation Cores connected through a Network-
on-Chip for dynamic node allocation.

• We evaluate AMPLE on large-scale social graph datasets

ranging from 2K to 700K nodes, achieving an average
speedup of 243× and 7.2× compared to CPU and GPU
baselines, respectively.

II. BACKGROUND

A. Graph Representation
A graph G = (V, E) is a set of nodes/vertices V and edges

E . The set of feature representations at layer l is denoted by
matrix X(l) ∈ RN×D, where N = |V| is the number of nodes
and D is the feature size. An element ei,j = (vi, vj) present in
E indicates that there is a connection between nodes vi and vj ,
meaning node vj is contained in the set of i’s neighbors, Ni,
and vi is contained in Nj . In an undirected graph, the edge
element ei,j corresponds to ej,i. The connections in a graph
can be represented using an N ×N adjacency matrix, where
each element Ai,j represents an edge between nodes i and j.

B. Graph Neural Networks (GNNs)
Within a GNN, graph data is transformed over several layers

to perform classification and/or regression tasks on the full
graph or individual nodes/edges. GNNs can be represented
through the Message Passing Mechanism [2], which generalizes
the node update law as follows.

xl+1
i = γ(xl

i,Aj∈N (i)(ϕ(x
l
i,x

l
j , e

l
i,j))) (1)

In the general case, each node aggregates incoming messages
produced by a function ϕ, which is equivalent to aggregating
neighboring embeddings when ϕ = xl

j . Messages are aggre-
gated through an arbitrary permutation-invariant aggregation
function Aj∈N (i) over the neighborhood of node i, and and
an arbitrary transformation function γ(xl

i,m
l
i), where ml

i is
the result of aggregation (i.e. mi = Aj∈N (i)ϕ(x

l
i,x

l
j , e

l
i,j)).

1) Graph Convolutional Networks (GCN): emerged as a
solution analogous to Convolutional Neural Networks in the
computer vision domain [4]. The node update law is as follows.

xl+1
i = W

 ∑
j∈Ni∪{i}

ej,i√
d̂j d̂i

xl
j

 (2)

Here, A is taken as the summation A =
∑

j∈Ni
ϕ(xj , ei,j),

with γ(xi,mi) = Wmi, as proposed by Kipf and Welling [4].
The scaling factors are d̂i = 1 +

∑
j∈N (i) ej,i.

2) Graph Isomorphism Networks (GIN): this architecture
can provably generate distinct feature updates for two graphs
that can be shown to be non-isomorphic through the Weisfeiler-
Lehman test [5], maximizing its representational capacity [9].

xl+1
i = MLP

(1 + ϵ) · xl
i +

∑
j∈N (i)

xl
j

 (3)

As shown in Equation 3, the same aggregation A is used
as in GCN, with γ = MLP

[
(1 + ϵ)xl

i +mi

]
, where MLP

represents a Multi-Layer Perceptron. In contrast to GCN, GIN
does not make use of normalization factors in aggregation (i.e.
ϕ = xj), and a residual connection is added after aggregation,
which is equivalent to a self-connection in the graph’s adjacency
matrix. Note ϵ is a small scalar.

3) GraphSAGE: proposed as an inductive framework to
generate feature embeddings with high representational capacity
for unseen nodes and/or sub-graphs [3].

xl+1
i = W1xi +W2 ·

(
mean
j∈N (i)

σ(W3x
l
j + b)

)
(4)

As shown in Equation 4, the message passing function ϕ
is taken as a fully-connected layer with activation σ over the
neighbouring embeddings xj , A is taken as the mean, and the
transformation γ(xi,mi) = W1xi +W2mi where W1,W2 are
linear projection matrices. The projection parameterized by W1

can be seen as a scaled residual connection.

C. Neural Network Quantization

Quantization has been widely explored as a method for
reducing memory requirements of neural networks. In gen-
eral, activations are quantized following Equation 5, where
qmin, qmax form the chosen range of representable values, s
is the scaling factor to place x into the required range, z is
the zero-point (floating point equivalent of the value 0 in the
quantized space) and the brackets represent rounding.

xq = min(qmax,max(qmin,
⌊x
s
+ z

⌉
)) (5)

The min and max functions are in place to show that any
values beyond the specified range assume the fixed-point value
at the limit. Following this, values can be de-quantized by
x̂ = (xq − z)s, such that x̂ is an approximation of the original
floating-point value.

1) Quantized Graph Neural Networks: Degree-Quant, pro-
posed by Tailor et al., was one of the first works suggesting
mixed precision quantization of GNNs [6]. The authors suggest
that the aggregation phase of GNNs is the predominant source
of quantization error, which can be observed more heavily in
nodes with higher in-degrees, as the absolute magnitude of
aggregation grows with the number of neighbors. The growth
in aggregation for high-degree nodes affects the qmax and qmin

values, reducing the quantization resolution due to these outliers
in the distribution of aggregation results. The authors address
this issue by stochastically applying a protection mask at each
layer following the Bernoulli distribution. Protected nodes
operate in floating-point, while non-protected nodes operate in
fixed-point. A node’s probability of protection is a function
of its degree, interpolated within a parametrizable range
[pmin, pmax], where the graph nodes with minimum/maximum
neighbor counts are assigned the limit probabilities.

III. ARCHITECTURE

The architecture of the AMPLE accelerator is shown in
Figure 1. In this section, we describe how event-driven
programming, mixed-precision arithmetic and large graph
processing are achieved at the circuit level.

Aggregation Engine
(AGE)

Transformation Engine
(FTE)

Node Instruction
Decoder (NID)

...

Aggregation Buffer

Nodeslot 0

Nodeslot 63

Weight Bank

...

Feature Bank

Prefetcher

...

Instruction
Prefetcher

AXI-L

Host CPU

32 High-Bandwidth
Memory (HBM)

DRAM C0

Fig. 1: Architecture of the AMPLE accelerator. The NID
handles communication with the host device and driving other
functional units. The Prefetcher fetches and stores weights
and features in local memories. The AGE performs neighbour
aggregation through its Network-on-Chip (NoC) design. The
FTE performs matrix multiplication between weights and
aggregation results in a systolic array.

A. Event-Driven Programming through the NID

The Node Instruction Decoder (NID) is a memory-mapped
register bank comprised of a configurable number of nodeslots.
Each nodeslot contains the information required to perform
a node’s aggregation and transformation steps, and a state
machine is maintained indicating each node’s state. The
host device runs concurrently with the accelerator to offload
the GNN workload. First, the NID is programmed with
a number of global and layer-wise parameters, including
node/feature counts and aggregation functions. Subsequently,
the host programs the nodeslots and updates values in a
mask available nodeslots ∈ {0, 1}n where n is the number
of nodeslots. While a node is programmed, the accelerator
performs aggregation and transformation over previously-
programmed nodes. The available nodeslots mask is then
deasserted independently by the accelerator when the computa-
tion is finished. As such, the accelerator supports a node-wise,
event-driven computation paradigm.

After a nodeslot is programmed, the NID drives the
Prefetcher, AGE and FTE to perform the computation, and
updates the node’s internal state machine after each step. No
further intervention is required from the host, and an interrupt
is sent to indicate the nodeslot can be reused. Typical graph
datasets often display high variance in execution time per
node, depending on neighbour count and numerical precision.
Whenever a nodeslot finishes its computation, it can be
immediately reprogrammed by the host with the next node. This
event-driven control flow requires the host to run concurrently
with the accelerator to monitor its state and drive further
work when resources are available. Within the NID, nodes
running concurrently are serviced with round-robin arbitration

to grant access to shared resources within the Aggregation and
Transformation Engines.

B. Mixed-precision Arithmetic at Node Granularity

Processing elements of various numerical precisions are
arranged in a Network-on-Chip (NoC) architecture within
the Aggregation Engine, with the ratio of PEs allocated to
each precision being configurable at compile time. Each PE is
coupled to a router responsible for transferring packets over
the network. Each packet is comprised of a head flit carrying
routing payloads, an arbitrary number of body flits carrying data,
and a tail flit. Since there is no requirement for communication
between PEs of different precisions, these are placed within
isolated sub-networks as shown in Figure 2, reducing packet
congestion.

AGC0

AGCm*n

...

BMm

Float Mesh

AGM0 AGMn...

Prefetcher

Float AGMs

...

BM0 AGC0

AGCm*n

...

BMm

Int8 Mesh

...

BM0

AGM0 AGMn...

Int8 AGMs

...

NID ...

Fig. 2: Architecture of the Aggregation Engine (AGE). Work
for each node is handled by an Aggregation Manager (AGM),
which allocates a number of Aggregation Cores (AGCs)
according to the runtime requirements. Each AGC receives
instructions from the Node Instruction Decoder (NID) and
feature embeddings from the Prefetcher. Embeddings are
transferred to the AGCs through the NoC, and results are
buffered by the Buffering Managers (BMs).

As discussed in Section I, static pipelining through the
double buffering mechanism leads to pipeline gaps when
computing over graphs with high variance in node degree,
since low-degree nodes must wait for high-degree nodes to
release resources. This is alleviated in the AGE by dynamically
allocating processing elements within each aggregation sub-
network according to a node’s feature count and precision.
As such, nodeslots are allocated resources independently of
any other ongoing workload, and these resources can be
immediately reused upon completion, forming an event-driven
programming model.

C. Large Graph Processing

Inference over large graphs is enabled by the Prefetcher,
which contains a storage element named “Fetch Tag” for each
nodeslot in the NID. Fetch tags for all nodeslots make memory
requests concurrently in a two-stage process - first, the list of
neighbouring node IDs for each node is stored in the Address
Queue, and these are then used as pointers for the neighbouring
feature embeddings, which are stored in the Message Queue.

CR CS PB FL RD YL
100

101

102

103

Sp
ee

d-
up

33×
24×

75×
32×

5× 6×

994× 831×

224×

65×
38×

13×

GPU
AMPLE

CR CS PB FL RD YL

54× 55× 50× 44×

9×
13×

829× 695×

127×

34×
20×

9×

CR CS PB FL RD YL

GCN (Mean: 12.9×) GIN (Mean: 5.7×)

31×
24× 32× 45×

10×
16×

235× 195×

38×

10×
8×

2×

GraphSAGE (Mean: 3.0×)

Fig. 3: Inference speedup compared to Intel Xeon CPU baseline obtained on the RTX A6000 GPU and AMPLE simulation. The
GPU shows an average speedup of 29.8×, 37.8× and 26.7× across all datasets for GCN, GIN and GraphSAGE, respectively.
Equivalent speedups on AMPLE were 361.3×, 285.8× and 81.7×.

The large graph use case is supported a partial response
mechanism. For nodes with degree higher than the Fetch Tag
capacity, the Fetch Tag fills the Message Queue and directly
unblocks the AGE to begin the aggregation process. Once
aggregation begins, the Fetch Tag is re-enabled and continues
to fetch the remaining neighbours, hiding the memory access
latency. This mechanism leads to lower storage requirement
per nodeslot, allowing a higher number of Fetch Tags in the
Feature Bank, i.e. deeper node parallelism.

IV. EXPERIMENTS

The described accelerator was benchmarked on GCN, GIN
and GAT networks (see Section II) over 6 graph datasets were
chosen: three small citation graphs and three larger social media
graphs. The DegreeQuant algorithm was used to assign the
precision for each node in each dataset. In each evaluation, the
design was configured to have a number of nodeslots allocated
to low precision relative to the ratio of low precision nodes
determined by DegreeQuant. Due to the high sparsity in high
precision nodes, it was found that allocating a single nodeslot
to floating-point was enough to meet the requirement for task
accuracy while maximising hardware node parallelism.

A. Performance Analysis

Each model was first benchmarked on the Intel Xeon CPU
and RTX A6000 GPU across all datasets, with randomly
initialized node features and layer weights. In each case, the
mean latency was obtained over 100 trials to account for
runtime jitter due to non-deterministic processes. The GPU

cache was emptied prior to each prediction step such that
latency readings include off-chip memory access for features
and weights. GPU warm-up time was not included, meaning
inference times are taken after driver initialization is complete.
Finally, inference latency on AGILE was obtained from
Modelsim 19.2 simulation results at a frequency of 200MHz,
obtained for the Alveo U280 card using the Vivado 23.1
toolflow. As shown in Figure 3, AMPLE led to an improvement
in mean inference time compared to the CPU/GPU baselines
across all models. Table I shows the obtained values for latency
and node throughput for GCN.

V. CONCLUSION

We presented AMPLE, an FPGA-based accelerator for
GNNs addressing irregular node distribution in graphs through
a novel event-driven programming model. The accelerator’s
mixed-precision architecture, featuring isolated sub-networks
for numerical precisions, maximizes hardware utilization
through node-level quantization. Additionally, a partial response
mechanism allows for efficient processing of large graphs by
hiding memory access latency. Experimental results across
six diverse datasets demonstrated average speedups of 361.3×,
285.8×, and 81.7× compared to CPU baselines for GCN, GIN,
and GraphSAGE models respectively, while also outperforming
GPU implementations by 12.9×, 7.5×, and 3.0×. These results
establish AMPLE as a promising solution for high-performance,
memory-efficient GNN inference.

TABLE I: Inference time for evaluated datasets using a single-layer GCN model. Mean latency is reported over 100 iterations.

CPU (Intel Xeon) GPU (RTX A6000) AMPLE @200MHz

Mean Throughput Mean Throughput Mean Throughput Latency Latency
Latency [ms] [nodes/ms] Latency [ms] [nodes/ms] Latency [ms] [nodes/ms] Gain (CPU) Gain (GPU)

Cora 244.4 11.1 7.2 376.3 0.246 11,022.0 994.8× 29.3×
CiteSeer 244.3 13.6 10.1 330.0 0.294 11,318.6 831.2× 34.3×
PubMed 362.4 54.4 4.8 4,099.5 1.617 12,193.2 224.1× 3.0×

Flickr 475.4 187.8 14.5 6,146.2 7.227 12,350.0 65.8× 2.0×
Reddit 953.3 244.4 171.0 1,362.0 24.6 9,463.6 38.7× 6.9×

Yelp 760.8 942.2 110.9 6461.6 57.5 12,471.7 13.2× 1.9×

Average 506.8 242.2 53.1 3,129.3 15.2 11,469.9 361.1× 12.9×

REFERENCES

[1] Andry Alamsyah, Budi Rahardjo, and Kuspriyanto.
“Social Network Analysis Taxonomy Based on Graph
Representation”. In: (Feb. 2021). URL: https://arxiv.org/
abs/2102.08888v1.

[2] Justin Gilmer et al. Neural Message Passing for Quantum
Chemistry. 2017. arXiv: 1704.01212 [cs.LG].

[3] William L. Hamilton, Zhitao Ying, and Jure Leskovec.
“Inductive Representation Learning on Large Graphs”.
In: Neural Information Processing Systems. 2017. URL:
https://api.semanticscholar.org/CorpusID:4755450.

[4] Thomas N. Kipf and Max Welling. “Semi-Supervised
Classification with Graph Convolutional Networks”. In:
5th International Conference on Learning Representa-
tions, ICLR 2017 - Conference Track Proceedings (Sept.
2016). DOI: 10.48550/arxiv.1609.02907. URL: https:
//arxiv.org/abs/1609.02907v4.

[5] Adrien Leman. “THE REDUCTION OF A GRAPH TO
CANONICAL FORM AND THE ALGEBRA WHICH
APPEARS THEREIN”. In: 2018. URL: https : / / api .
semanticscholar.org/CorpusID:49579538.

[6] Shyam A. Tailor, Javier Fernandez-Marques, and
Nicholas D. Lane. “Degree-Quant: Quantization-Aware

Training for Graph Neural Networks”. In: (Aug. 2020).
DOI: 10.48550/arxiv.2008.05000. URL: https://arxiv.org/
abs/2008.05000v3.

[7] Petar Veličković et al. “Graph Attention Networks”. In:
6th International Conference on Learning Representa-
tions, ICLR 2018 - Conference Track Proceedings (Oct.
2017). DOI: 10.48550/arxiv.1710.10903. URL: https:
//arxiv.org/abs/1710.10903v3.

[8] Shoujin Wang et al. “Graph Learning based Recom-
mender Systems: A Review”. In: IJCAI International
Joint Conference on Artificial Intelligence (May 2021),
pp. 4644–4652. ISSN: 10450823. DOI: 10.24963/ijcai.
2021/630. URL: https://arxiv.org/abs/2105.06339v1.

[9] Keyulu Xu et al. “How Powerful are Graph Neural
Networks?” In: ArXiv abs/1810.00826 (2018). URL:
https://api.semanticscholar.org/CorpusID:52895589.

[10] Mingyu Yan et al. “HyGCN: A GCN Accelerator with
Hybrid Architecture”. In: Proceedings - 2020 IEEE In-
ternational Symposium on High Performance Computer
Architecture, HPCA 2020 (Jan. 2020), pp. 15–29. DOI:
10.48550/arxiv.2001.02514. URL: https://arxiv.org/abs/
2001.02514v1.

